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Abstract

An approximate theory based on assumed strain and displacement fields, the Rayleigh—Ritz technique, and virtual
work is used to predict the snap-through forces and moments for three families of unsymmetric fiber-reinforced
composite laminates. Unsymmetric laminates generally have two stable equilibrium configurations when cooled from
their elevated cure temperature, and it is the moment required to snap the laminate from one stable configuration to
the other that is the subject of this paper. A simple force-controlled experiment is described which is used to measure the
snap-through moment and the characteristics of the configuration change, by way of strains, in four laminates. The
correlation between predicted results and experimental measurements is quite good, both in terms of moment levels and
in terms of strain response. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction and background

At one time the characteristics of unsymmetric polymeric matrix fiber-reinforced composite laminates
were nothing more than an unexplained curiosity (Hyer, 1981a). After curing flat at an elevated tempera-
ture (Fig. 1a) a thin [904/04]; cross-ply unsymmetric graphite-epoxy laminate, for example, will have two
cylindrical configurations when cooled to room temperature. One cylindrical configuration has a large
curvature in the x-direction and an imperceptible curvature in the y-direction (Fig. 1b). The other cylin-
drical configuration has a large curvature in the y-direction and an imperceptible curvature in the x-
direction (Fig. 1c). The curvatures for the two configurations are of opposite signs and the laminate can be
changed from one configuration to the other by a simple snap-through action initiated by applying mo-
ments to the edges of the laminate. Subsequent analysis by Hyer (1982) explained this behavior. Obviously,
the difference in thermal expansion of the material in the fiber direction relative to the thermal expansion
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Fig. 1. Shapes of [904/04]; laminate. (a) Curing temperature: flat, (b) room temperature: stable cylindrical configuration with curvature
in the x-direction, (c) room temperature: stable cylindrical configuration with curvature in the y-direction, and (d) room temperature:
unstable saddle configuration.

perpendicular to the fibers is what is responsible for the flat cured laminate deforming as it is cooled.
However, as seen by the scale in Fig. 1, with the laminate exhibiting out-of-plane deflections, w, many times
the laminate thickness, H, the key to explaining the behavior was inclusion of geometric nonlinearities. The
numerical results revealed that in addition to the two cylindrical shapes, a saddle shaped configuration, as
shown in Fig. 1d, also satisfies the equilibrium conditions. A stability analysis, however, showed that the
saddle shape corresponds to unstable equilibrium and therefore is never observed. The two cylindrical
configurations are stable and corresponded to equal minimum total potential energy states. Interestingly,
the saddle is the shape predicted when geometric nonlinearities are ignored. Also, thicker unsymmetric
laminates exhibit a single saddle shape. Hyer’s analysis shows this thickness effect is actually dependent on
the side length-to-thickness ratio rather than just the thickness. In a subsequent analysis, Hyer (1982)
considered slightly more general cross-ply laminates, e.g., [03/90];. Hamamoto and Hyer (1987) investi-
gated the configurations of cross-ply laminates as they were cooled from their elevated cure temperature. As
most composite laminates are cured in an autoclave or hot press, usually within a restraining vacuum bag,
they are not free to deform during cooling and also are not visible until cooled to room-temperature
conditions and removed from the hot press or autoclave. Therefore, observation during cooling is not really
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possible. However, since curing occurs at the elevated temperature and the step of cooling to room tem-
perature is reversible, cured and cooled laminates can be reheated under unrestrained conditions and
the deformation behavior measured. Hamamoto and Hyer took this approach and investigated tempera-
ture—curvature relations for several laminates. Correlation between predictions and measurements was
good.

Dang and Tang (1986) extended Hyer’s earlier work to include unsymmetric laminates more general
than just the cross-ply case. If the unsymmetric laminate is not a simple cross-ply, it will develop twist
curvature, in addition to curvature in the x- and y-directions, as it cools. These curvatures can be inter-
preted in terms of principal curvatures and principal curvature directions. Dang and Tang introduced more
involved polynomial functions than Hyer (1981b) originally used for the approximate displacement fields in
their Rayleigh—Ritz formulation, and the principal curvature coordinate system was used as a starting
point. Through coordinate transformation, the displacements in the structural coordinate system, a system
with the coordinate axes aligned with the side lengths of the laminate, were computed. The total potential
energy was formed and the first variation used to obtain equilibrium equations. The assumed polynomial
displacement functions were not chosen carefully, as only the sum of two of the unknown coefficients in the
assumed functions could be solved for, as opposed to being able to solve for all the unknown coefficients,
which is usually the case with a Rayleigh—Ritz approach. None-the-less, comparisons with limited experi-
mental data from Hyer (1981a) were reasonable. Jun and Hong (1990) modified Hyer (1981b) original
approximate displacement field by adding more terms in the polynomials to account for the inplane shear
strain Hyer assumed was negligible for the cross-ply case. They found that shear strain was indeed negli-
gible for square laminates with very large or very small length-to-thickness ratios. However, for interme-
diate length-to-thickness ratios, they found shear strain could be important. Jun and Hong (1992) then
modified Dang and Tang (1986) approximate displacement functions by adding even more polynomial
terms and looking at more general unsymmetric laminates. They obtained fairly complex displacement
expressions and used several changes of variables and trigonometric relations to simplify these expressions.
The approach seemed unnecessarily complicated, and to verify the theory, a few experimental results for
principal curvature directions from Hyer (1981a) were used. Later, Peeters et al. (1996) developed a theory
for square angle-ply laminates based on the work of Jun and Hong (1992) by modifying their displacement
functions. The modified displacement functions used a more complete set of third-order polynomials. To
compute the total potential energy, Peeters et al. fixed the value of the principal curvature direction, as-
suming it was 45° relative to the laminate edges for all laminates in their study. This assumption, pre-
sumably, was based on the linear theory which predicts that angle-ply laminates exhibit equal curvatures in
the x- and y-directions and therefore have the principal curvature direction equal to 45°. Other constraints
were applied as part of their theory, and experimental results from one 30° angle-ply laminate were pre-
sented to compare with the theoretical model. The comparisons between the experiment and predictions
were reasonable, though the authors went on to explain how manufacturing problems, material property
uncertainties, and material inhomogeneities could have influenced the experimental results. Cho et al.
(1998) revisited the earlier work of Hyer (1981a,b, 1982) by assuming that slippage between the tool plate
and the laminate during cure and cooling are a factor in the room-temperature curvature observed. They
provided numerical and experimental evidence that slippage can be a factor, accounting for at least a 25%
reduction in curvature as compared to the case were slippage is ignored. Though they began the analysis
for general laminates by using transformations much like Jun and Hong (1990, 1992), results centered on
cross-ply laminates.

There have been a number of finite-element analyses of unsymmetric laminates, most notably Schlecht
et al. (1995, 1999). This approach can, of course, be applied to general problems and issues can be studied in
more detail. However, the approach can lead to difficulties finding multiple solutions and dealing with
unstable equilibrium configurations. Often, constraints have to be applied to the finite-element model to
force a particular solution in a situation where there are multiple solutions. Of course, something must be
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known about these other solutions, including whether or not they exist. Tuttle et al. (1996) exploited the
original theory by Hyer (1981b) to study the influence of fiber pre-stress on residual curing stresses.
More recently, Dano and Hyer (1997) developed a fairly comprehensive theory for general unsymmetric
laminates. As the total potential energy does not explicitly involve displacements, and since for the cooling
problem there is no agent to do external work, Dano and Hyer’s development centered on approximations
to the strains. In addition, unlike previous analyses for general unsymmetric laminates, the analysis was
developed in the structural coordinate system rather than the principal curvature coordinate system. If the
latter approach is taken, then the orientation of the principal curvature coordinate system relative to the
side lengths of the laminate is an unknown and must be solved for. The orientation appears in the ensuing
algebra in transcendental fashion, making calculations difficult. Peeters et al. made a priori assumptions
about the orientation in order to avoid the algebra but, as shown by Dano and Hyer (1997), their as-
sumption was not correct. Dano and Hyer (1997) used polynomial expressions for the strains and studied
three families of unsymmetric laminates. Curvatures were measured in the structural coordinate system for
eight laminates from these families. The data were transformed into principal curvatures and principal
curvature directions, and these were compared with predictions. Good agreement was obtained.

2. Present paper

As the snapping from one configuration to another is a very interesting aspect of unsymmetric laminates,
the present paper focuses on snap through. It is felt there could be useful applications for unsymmetric
laminates in situations where multiple structural configurations are needed. Rather than continuously
expending energy to force a structure with a single configuration to maintain an alternative configuration,
as is currently done with a number of so-called smart structure concepts, expending energy for a short
period of time to force a structure to change from one natural and stable configuration to another natural
and stable configuration would seem to be a more energy-efficient, predicable, and reliable approach. As
such, the snap-through event, and in particular, the snap-through forces or moments, become important.
Dano and Hyer (1996) briefly looked at the snap-through phenomenon for a specific cross-ply laminate.
They predicted and measured the forces in a loading scheme designed to exert known moments near the
edges of a cross-ply laminate and found good correlations with predicted force vs. strain relations. In their
finite-element analysis, Schlecht and Schulte (1999) held the center point of the laminate and computed the
corner forces necessary to effect snap through from one cylindrical configuration to the other. It was shown
that the for [0,/0,]; laminates the force required to produce snapping increases monotonically with 0.

The present paper builds on the approach of Dano and Hyer (1996), which was restricted to cross-ply
laminates, and presents further experimental data. This paper begins by developing the theory necessary to
compute the moments, actually forces acting through moment arms, necessary to cause general unsym-
metric laminates to change configurations. The Rayleigh—Ritz technique is used in conjunction with the
principle of virtual work. After the theory is presented, numerical results for a number of laminates are
presented. Then, experiments are described which are used to measure the snap-through forces. Finally,
comparisons between measurements and numerical results for four laminates are presented. Snap-through
force levels and strain characteristics are discussed.

3. Problem formulation

Fig. 2a shows an overall view of the scheme considered here to produce snap through. At the cure
temperature the laminate is flat, the x- and y-directions are parallel with the orthogonal edges of the flat
rectangular laminate, and the z-direction is perpendicular to the laminate. (The x-, y-, and z-directions are
considered the structural coordinates.) When cooled to room temperature, since the laminate is generally
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Fig. 2. Geometry of the force arrangement.

unsymmetric, as opposed to being a cross- or angle-ply laminate, the shape of the laminate consists of
curvatures in the x- and y-directions as well as twist curvature, as is shown in Fig. 2a. To affect a snap
through, it will be assumed that supports of length e are attached perpendicular to the laminate and forces
F are applied at the upper ends of the supports to generate moments on the laminate. The forces on the ends
of the two supports are collinear and directed toward each other. While this approach may seem rather
contrived, the set-up lends itself to relatively simple experiments and conceivably, to continue with the
discussion of smart structures, the force could be generated by a shape memory alloy wire stretched be-
tween the tips of the supports and heated so as to change phase and contract. Moreover, as snapping back
and forth from one configuration to another may be desirable, a companion set of supports and wires may
be attached on the underside of the laminate to affect the reverse snap. This companion set will not be
considered here. It could be argued that such an arrangement of supports and wires might be cumbersome.
No doubt, variants can be designed which make the arrangement more tidy, but that is not the issue here.
In Fig. 2a the angle f corresponds to the angle between the line of action of the forces, denoted by /, and
the x-direction. The bases of the supports are attached so that initially the line of action of the forces is in
a principal curvature direction of the room-temperature configuration of the laminate. The principal
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curvature direction makes angle @, with the +x-axis and Fig. 2b shows a planform view of the scheme when
F = 0. The coordinates of where the bases of the supports attach to the laminate are denoted x, and y,, and
the distance between the bases of the supports is 2L, these being measured when the laminate is flat. The
relation between these geometric quantities is

x, = £L; cos P, (1)
Vs = £Lgsin @y.
The forces exert moments on the laminate proportional to F and e. The response of the laminate to these
moments will be determined using the principle of virtual work, which can be stated as
dWr =3Il — dWr = 0, (2)

where 57 is the total virtual work, 81T the first variation of the strain energy, and 3/ the virtual work of
the applied forces.

3.1. Formulating 611

Assuming a state of plane stress, the strain energy of the laminate, I1, can be expressed as a function of
the material and geometric properties of the laminate, the applied temperature change, AT, and the total
strains by,

Ly Ly H
Ty, _ _ _ _ _ _ _

IT = [Lr/%y [H (%Qngi + Onaty + Q167 + 3008 + Osghuén + 306677, — (O11% + Oy
=/

+ Qm“xy)SxAT — (Onpos + sz“y + st‘“xy)gyAT — (162 + Qzéo‘y + Qsé“xy)“/xyAT) dxdydz,
(3)

where the Q;; terms are the transformed reduced stiffnesses of the individual layers (Hyer, 1998), and L, and
L, are the planform dimensions when the laminate is flat. The total strains &,,¢,,7,, are given by,
=6 +zK) & = 82 + ZKS Vey = yij + zlcgy. (4)

g Q0 0 20 0,0
The quantities ¢/, ¢, ), and , K

" ;cgy are the total midplane strains and curvatures, respectively, defined by

o o T /ow\t a1/ awd\ , o’ owd ow’
B=atr(mr) d=mtr(mn] W=mo et o (5)
Ox 2\ Ox Yoo 9y 2\ Oy Yo 0y Ox  Ox Oy
o*w® o*w' o*w’
0_ 7 0 T 0 ™ 6
Ko ox2 Ky 0y? Ry 0x0y’ (6)
where 1°,1°, and w° are the displacements of the midplane in the x-, y-, and z-directions, respectively. It is

seen in the above equations that geometric nonlinearities in the sense of von Karman are included. Here the
extensional midplane strains are approximated using the following set of complete polynomials:

&0

X

= ¢+ X’ + 3y + caxy,
0

&, =Cs + cf,x2 + C7y2 + cgxy,

(7)

where the ¢;,i = 1, 8 are to-be-determined coefficients. This functional form for the extensional strains has
been discussed in Dano and Hyer (1997), where a more general form was used but was found to be un-
necessary. Independently, Cho et al. (1998) used identical expressions for extensional strains. The inplane
shear strain is more difficult to assume, as it must be consistent with the strains ¢ and &). To assure
consistent strains, the inplane shear strain is determined using the strain—displacement relations, and that
will be done shortly. The out-of-plane displacement w° can be easily approximated by
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0 1,02 2 8
W (x,») = 3(cox” + c10y” + c1ixy), (8)

where c¢y,c19, and c¢q; are three more to-be-determined coefficients which represent, respectively, the negative
of the curvatures in the x- and y-directions and the negative of the twist curvature, as
2.0 2.0 2.0

It is seen that the curvatures are predicted to be a constant throughout the laminate. Alternatively, the
curvatures ¢y, 19, and ¢;; can be thought of as average curvatures. The form of w’(x,y) in Eq. (8) is felt to
represent the out-of-plane displacements for a large percentage, if not all, of the unsymmetric laminates
observed.

Using the expressions for the extensional strains & and s‘y) and the out-of-plane displacement w°, the
inplane displacements #° and ©° can be determined by integrating the rearranged strain—displacement re-
lations given by

= —C11- (9)

2

%L;O = 82 —% (%vf) =) 4 X’ + 397 4 cuxy —% (a;x + ;c”y)z (10)
and

2

aa—lf = 82 - % <6a_v;0> = ¢5 4 cgx® 4 797 + cgxy — % (cloy—|— %cmc)z. (11)
Integrating Egs. (10) and (11) with respect to x and y leads to, respectively,

W’ (x,y) = c1x + %czx3 + cxy? + %c4x2y — éc§x3 — %@cllxzy — éc%lxyz +h(y) (12)
and

P (x,y) = csp + cex’y + %07)/3 + %ngy2 — éc%0y3 — icloc”xyz — éc%lxzy +g(x), (13)

where /(y) and g(x) are a result of partial integration. To maintain the pattern of ¥°(x, y) and v°(x, y) being
polynomials in odd powers of x and y, #(y) and g(x) were chosen to be of the following form:

h(y) = cioy + 3c13y”, (14)
g(x) = crsx +Lex’.

In the above c1»,¢13, 14, are ¢;s are additional unknown coefficients. To eliminate rigid body rotation in
the x—y plane from being part of the assumed displacements, c¢;5 has to be equal to cj,. Therefore the
displacements u°(x,y) and °(x,y) can be simply expressed as

1 1 2 1 1 1

uo(x,y) =cix+cepy+z (e —zecn |y + (e ~u x4 < Cz——Cg X+ ey,
2 2 8 3 2 3

2 (15)

' (x,») = ciox + sy + | c6 — ‘u Xy -f'l cg — l010011 X 'i‘l 7 — 102 V' +1014x3-
’ 8 2 2 3 2710 3

The inplane shear strain can then be easily computed by the third strain—displacement relation, namely,
o ou® &’ o ow

T T T oy

c? 1 /coc 1 /cioc
= 2cpp + (CgC10:+2C3+2C6)xy+ <( 9 11+C4) +C]4)X2+ ((M+C3) +cl3>y2~

2\ 2 2\ 2
(16)
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This approach insures a consistent set of expressions for the needed midplane strains. None of the recent
investigators (Jun and Hong, 1992; Peeters et al., 1996) studying more general unsymmetric laminates
appeared to have taken this simple approach. The approximations obtained for the midplane strains use a
total of 14 to-be-determined coefficients. Back-substituting the midplane strains and curvatures into the
total strains, Eq. (4), and into the definition of the strain energy, Eq. (3), the spatial integrations in the
expression for the strain energy can be conveniently carried out. The final result is an algebraic expression
for the strain energy of the laminate of the form

I =10H(c,i=1,14). (17)

Obviously, IT is also a function of the laminate material properties, geometry, and temperature change, but
here interest centers on its dependence on the unknown coefficients.
From Eq. (17), the first variation of the strain energy can be expressed as

517:8]7((:1,02,...,501,802...). (18)

3.2. Formulating dWr

Referring again to Fig. 2a and considering the laminate in a deformed configuration, the virtual work
of the applied force F is defined as the work done by the force as the laminate is given a virtual displace-
ment. The virtual displacement of the force is denoted as SRy, as illustrated in Fig. 3. The figure represents
half of the cross section of the laminate in the /—z plane, which is oriented at an angle f# with the x-direction.
The virtual displacement 0Rr is not necessarily in the /-z plane. Similar effects occur at the other support.
Note that during the virtual displacement the force remains parallel to the x—y plane. The total virtual work
of the force F acting on the two supports can be expressed as,

OWr =F - ORp (19)

F - OR .
x=Lg cos P + F x=—Lg cos Py
y=L sin & y=—Lgsin @

The virtual displacement SRy is evaluated by first computing the position vector R of the force relative
to the origin of the coordinate system, then taking its variation. As illustrated in Fig. 4, the position vector
Ry can be expressed as the sum of the position vector to the base of the support, », and the vector directed

from the base of the support to the tip of the support, n*, i.e.,

Rr=7+n". (20)

The vector r can be written as

laminaté
virtual
displacement

Fig. 3. Virtual displacement of the laminate.
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Fig. 4. Force position vector computation.

? = (XJFUO(X,% ci,i = 1, 14))? + (y+ Uo(xaya ci7i = 13 14)); +w°(x,y, ci,i = 1) 14)23 (21)

where the notation is to emphasize the fact that the vector 7 depends on the unknown coefficients as well as
x and y. Since the vector n* is normal to the surface, it can be expressed as

i (e )

where 7 is the unit vector normal to the laminate surface at the support locations (x = 4L, cos @y,

y = £L;sin @) and (e + H/2) is the distance from the laminate reference surface to the tip of the support.

By definition, the unit vector n at a point (x,y) on the laminate surface is given by,
6x X a_y CP

@7 (23)

n(x,y) =

ar ar
o X oy

where the vectors 37 /0x and 07 /dy are tangent to the surface at point (x,y) and CP is shorthand for the
cross product and expands to

CP = CP,i + CP,j + CP.k, (24)
with

ICP| = \/CP2+CP? + CP2. (25)

Using the definition of 7 given by Eq. (21) to compute the unit vector n, vector r; can then be computed.
The virtual displacement 6R is given by

SRe = 87 + on', (26)
where from Eq. (21)
dr = f: Qac,- (27)
Jc;

i=1

and from Eq. (22)
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dn* = (e + H/2)dn. (28)
From Egs. (23)(25)

_ 1 —
|CP| |cP]?

or

(e AENT;
dn =T<Zai8ci> +(=1) i (Z > oc; |. (30)
|CP| Py aC[ |CP|2 Py @c,»

Expanding, so the components of Eq. (30) are more completely understood, the derivative in the second
summation is written out as

O|CP| 12 (CP2+CP2+CP?) | £(CP?+CP2+ CP?)

_ - — : (31)
G 2 \JerrrcPicr 2 cP|
With Egs. (24), (25), and (31), Eq. (30) becomes
14 - - = D 2 2 2
- 1 o(cCp P, P, 1 P \ O(CP; + CP: + CP:
6}’[: — (CXZ+%}]+C k)—i C_ ( - a Y ) 66‘1’- (32)
= \|cP] PP
This expression is of the form
o4
on = ZN[SC[, (33)
=1

where the definition of N ; 18 obvious and introduced as shorthand. As a result, using Egs. (26)-(28), and
(33), Ry can be written as

LS e [ HY-
oRe =Y | 5+ e+ M s (34)
i=1 !

The applied force F' can be expressed in terms of its components in the x—y—z coordinate system by

x=Lg cos &) = (7FCOS ﬁ)? + (7F sin B);a
y=Lg sin @ B B (35)
= (Fcosf)i + (Fsinp)j,

x=-—Lg cos fl>0
y=—Lgsindg

where the cos f§ and sin f§ can be evaluated using the expression for Ep given by Egs. (20)~(23). Specifically,
letting e, define the unit vector along the /-axis, then can e, can be expressed as a function of Ry by

21 — RF(xsays) - fF(*xm 7yr) ’ (36)

IR (%5, 35) — Re(—xg, =35
where the vector defined by Rr(x,,y,) — Rr(—x,, —);) represents the vector pointing from the tip of the

support at (—L; cos @y, —L, sin @y) to the tip of support at (L;cos @y, L, sin ®,). The expressions for cos ff
and sin ff needed in Eq. (35) can then be deduced from Eq. (36), since
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21 = RF(xS’yS) - RF(_xS7 _ys)
|RF<xsays) - RF(_xsv _)’s)|

By using Eqgs. (35)-(37) to form the dot product of Eq. (19), the virtual work of the force 6/ can be
computed.

= cos ﬁ? + sin [3;. (37)

3.3. Formulating Wy

The principle of virtual work, Eq. (2), can now be expressed as

14
ol
i=1 4

14
= Z ﬁ&ci.
i=1

The laminate is in equilibrium if the total virtual work vanishes, i.e., 8 = 0, for every admissible virtual
displacement oc;, i = 1, 14. Equating W to zero results in

fi=0 i=114 (39)

(38)

which represent 14 highly nonlinear algebraic equations in the 14 unknown coefficients ¢;, i = 1, 14. By
setting the temperature change AT equal to —280°F and the force F to zero, solving the equilibrium
equations expressed by Eq. (39) gives the cured shapes of the laminate at room temperature. By increasing
F and keeping AT at —280°F, the solutions of the equilibrium equations give the configurations of the
laminate as it is deformed by the force F at room temperature. In the computation of the equilibrium
solution using the Newton—-Raphson technique, the Jacobian

ofi
J= i,j=1,14 40
2| -t (40)
is computed for each temperature increment. The equilibrium solution is stable if and only if the matrix J is
positive definite. By calculating the eigenvalues of the Jacobian matrix, the stability of the equilibrium
solution can be assessed. When one eigenvalue is equal to zero or negative, the matrix is not positive definite
and the equilibrium solution is unstable.

4. Numerical results

The 14 equilibrium equations given by Eq. (39) were solved for a number of laminates from three
laminate families. The geometric and material properties of the laminates were chosen with consideration
for the experimental work. Specifically, square eight-layer graphite-epoxy laminates 11.5 x 11.5 in.? (= L,
and L,) and 0.040 in. thick (= H) were considered. The material properties of a layer of graphite-epoxy

were assumed to be
E; =24.77x10° psi E, =127 x10° psi Gy, = 1.03 x 10° psi @)
v =0.335 o =0.345 x 10°°/°F o, = 15.34 x 107°/°F.

It was assumed that the supports were attached 4 in. from the geometric center of the laminate (L, of Fig.
2b equals 4.0 in.). The angle @, representing the principal curvature direction was determined from the
calculations that led to figures like Fig. 5, to be discussed shortly, for each laminate. Obviously the length e
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of the support was important, but for the present, only the moment will be considered. To obtain numerical
results, the value of the applied moment was increased from zero to a level at which snap-through occurred.
For every moment level, the equilibrium equations were solved, giving the curvatures ?, KS, and Kgy of the
deformed laminate. From the values of these curvatures, the principal curvatures and principal curvature
directions were computed as a function of the applied moment. In addition, the angle  was computed.

A comment is in order regarding the numerical solution of Eq. (39): In addition to appearing elsewhere,
the unknown coefficients ¢;, i = 1, 14 appear in the denominators of the equations of Eq. (39), due mainly to
the form of Eq. (23). To make progress with the numerical computations, the force F was applied in small
steps in an iterative fashion. For each increase in load, where a coefficient appeared in a denominator, the
value from the previous iteration was used instead of treating it as an unknown. All these computations
were performed using Mathematica (Wolfram, 1991).

4.1. Room-temperature configurations

Before discussing the snap-through behavior, to provide insight into the multiple laminate configura-
tions at room temperature, it is worth discussing briefly the characteristics of the temperature—curvature
relations for unsymmetric laminates. Fig. 5 shows the predicted temperature—curvature relations of unre-
strained square 11.5 x 11.5 in.? eight-layer [904/0,4]; and [—60,/304]; laminates considered in the present
study over the temperature range room temperature to cure temperature, the reference temperature
(AT = 0°) being the elevated cure temperature. Shown in the figure are the curvatures in the x- and y-
directions, «, and «,, respectively, and the twist curvature, k,,, which is zero for the [904/04]; laminate.
Considering a cooling scenario, the [904/0,]; laminate starts flat at the cure temperature, point A in the
figure. As the temperature is lowered, small curvatures develop. The curvatures are equal and opposite and
thus the laminate deforms into a shallow saddle. At point B, about 25° below the cure temperature, the
temperature—curvature relationships trifurcate and follow either paths BC, BE, or BD. With path BC the
curvature in the x-direction increases while the curvature in the y-direction decreases. At room temperature,
point C, the curvature in the x-direction dominates, resulting in the cylindrical configuration of Fig. 1b.
With path BD the curvature in the y-direction increases while the curvature in the x-direction decreases. At
room temperature, point D, the curvature in the y-direction dominates, resulting in the cylindrical con-
figuration of Fig. 1c. With path BE the curvatures increase slightly and remain equal in magnitude but
opposite in sign. Point E corresponds to the saddle configuration of Fig. 1d. A stability analysis indicates
that path BE is unstable and paths BC and BD are stable. The results for the [—60,/30,4]; laminate are
similar, except for the existence of a twist curvature. The various shapes for the [-604/304]; laminate are
shown in the right-hand portion of Fig. 5.

4.2. Snap-through behavior

The deformation and snap-through behavior of the laminates from the [(© — 90),/04]; family, © = 0°,
15°, and 30°, is illustrated in Fig. 6 by way of moment vs. curvature relations. When no moment is applied it
is assumed the initial shapes of the laminates are cylindrical with large principal curvature K; and small
principal curvature K,. This corresponds to point C in the three parts of Fig. 5, which shows the cases for
® = 0° and 30° from this laminate family. (Points C, D, and E in Fig. 6 are the same as denoted in Fig. 5.)
As has been discussed, for the zero applied moment condition, the equilibrium equations have two other
solutions for the laminate configuration. One corresponds to the unstable configuration, point E, and the
other corresponds to the second stable cylindrical configuration, point D. As the moment is increased, the
curvature K; decreases and curvature K, remains imperceptibly small. When the moment is large enough,
point G in the figure, the laminates reach an unstable configuration and snap into the other cylindrical
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Shapes of the [-60,4/304]7 laminate

187

Temperature change AT (°F)
At point D

Fig. 5. Temperature—curvature relations for [(© — 90),/©4]; laminates.

shape. The snap-through is indicated by the arrow from G to D’ and is due to K; becoming a small positive
quantity and K, becoming a large negative quantity. As can be noted in the bottom portion of Fig. 6, during
the application of the moment, the principal curvature direction @ does not change relative to its value
for the no-moment condition, @,. Additionally, the angle § (not shown) remains equal to &(= ®,). The
moment—curvature relation does not depend strongly on the fiber direction ©.

The moment—curvature relations for the [(90 — @),/©0,] family are featured in Fig. 7. It is seen that for
this family the snapping moment is highly dependent on the fiber orientation. As the angle between the two
fiber orientations decreases, the moment required for snapping decreases. Unlike the first family, the
principal curvature direction depends strongly on the applied moment level, and the principal curvature
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Fig. 6. Moment—curvature relations for [(© — 90),/64]; laminates.

directions appear to be zero at the snapping moment. The numerical solution scheme is somewhat erratic at
the snap-through condition, so the solution exactly at the snap-through condition has not converged as well
as at other moment levels. More will be said of this shortly. The angle  (not shown), which at the no-force
condition is equal to @, changes very little (less than a degree) for all force levels. For laminates of the
[-04/0O4]; family shown in Fig. 8, the magnitude of the snapping moment also depends strongly on
the fiber orientation. The principal curvature direction depends strongly on the level of applied moment.
The angle  (not shown), however, remains virtually unchanged with force level. For this family, the
principal curvature direction appears to be 45° at snap-through.

As can be seen, there is a variety of snapping moment levels and changes in principal curvature direc-
tions among these three families of laminates. The behavior of the principal curvature direction with in-
creasing moment for the three families is an important aspect of the snap-through phenomenon. For each
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laminate in the [(© — 90),/04], family, the principal curvature direction of the unstable saddle configu-
ration is the same as the principal curvature direction associated with major curvature K; of the one of the
two stable cylindrical configurations. For each laminate of the [(90 — ©),/04]; family, the principal cur-
vature direction of the unstable saddle configuration is 0°. For each laminate of the [— @4/, family, the
principal curvature direction of the unstable saddle configuration is 45°. It is apparent that as the stable
cylindrical configuration with curvature K is flattened by increasing levels of the applied moment, the
principal curvature direction of the flattened configuration approaches that of the room-temperature saddle
configuration, and when the flattened configuration becomes unstable, the principal curvature direction
coincides with that of the unstable saddle. As snap-through is a dynamic event and the present analysis is
static, it is only possible to conjecture as to the meaning of this observation. One possibility is that when
passing from one stable cylindrical configuration to the other, for a brief instant the laminate assumes the
unstable saddle configuration.
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5. Experimental set-up

To determine the degree to which the numerical predictions were accurate, a number of eight-layer
unsymmetric graphite-epoxy laminates were fabricated. The laminates were 0.040 in. thick and square and
were trimmed to have a side length of 11.5 in., the dimensions used to obtain numerical results in the last
section. As graphite-epoxy is dark in color, before curing the laminates at an elevated temperature, lighter
color Kevlar fibers were laid at intervals in the x- and y- directions to form a grid to make it easier to see the
deformations of the laminates. The laminates were loaded with a rather simple loading scheme that used
water filling a container to apply an ever-increasing tension level to a thin wire that was attached to
supports which, in turn, were attached to the laminate. The loading scheme was designed to assure that the
laminates were being loaded in a force-control mode that was not contaminated by any restraint on dis-
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[90,4/04]7 laminate

support ¢

stiff base — %

support b

support a

load cell

weight

Fig. 9. Description of experimental set-up.

placements. A schematic of the loading arrangement, showing a [90,/04]; laminate, is illustrated in Fig. 9.
Three supports, labeled a, b, and c in the figure, were attached to the laminate by bolts through holes drilled
through the laminates. Support a was longer than supports » and ¢ and served the dual role of applying
force to the laminate and attaching the laminate/forcing system to a stiff base. The end of a thin wire was
fixed at support ¢ and was looped half-way around support b, then back to support a. At each support the
wire was a known distance from the midplane of the laminate, providing a known moment arm through
which the force acted to produce a moment. Specifically, e in Figs. 2 and 4 and Eq. (34) was 0.625 in. The
wire was looped quarter-way around support @ and then down to a load cell, which was attached in series to
a water container. With this looped wire arrangement, the laminate was subjected to twice the force level
registered by the load cell. Due to the deformation of the laminate as the force level was increased, the thin
wire actually had to slide slightly around supports » and a. Care was taken to ensure that this slippage could
occur with minimal friction. Though curvatures have been discussed to this point, it is difficult to measure
them directly. Since the primary interest in this work was the determination of the snap-through force level,
back-to-back strain gage rosettes were used to monitor the response of the laminate as a function of force.
The load cell and strain gage signals were recorded by a computer. Fig. 10 is a photograph of a [—304/304];
laminate being loaded. The lighter color Kevlar grid on the plate can be seen, as can the three supports,
C-clamps for clamping the plate to the stiff base using the longer support, and the strain gage leads. The
experimental procedure was as follows: The laminate, with the three supports attached, was clamped into
position, as in Figs. 9 and 10. With the load cell monitoring the tension in the wire, and the strains being
recorded, water was slowly added to the container by way of a small-diameter tube. At snap-through the
strains experienced a large change in value. By examining the resulting force-strain data, the force at snap-
though could be determined. Actually, water flow was stopped at snap-through and the weight of water was
used as another measure of the snap-through force. By carefully watching the laminate, it was possible to
anticipate the snap-through event and terminate the water flow without any danger of overfilling the water
container. Of course with the load cell and water container adding to the tension in the wire, these effects
had to be accounted for. As an additional step, each laminate was loaded and the snap-through event
recorded at least twice.
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[-304/304/7 laminate

wire to load cell
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Fig. 10. Photograph of experimental set-up.

6. Comparison of numerical results with experiments

The loading apparatus described in the last section was used to load four laminates. The specific layups
were: [904/04];, a member of several families and shown in Fig. 6; [—60,/304);, a member of the
[(© —90),/0O4]; family and shown in Fig. 6; [60,4/304] 1, a member of the [(90 — ©),/O4]; family and shown
in Fig. 7; [-304/304)1, a member of the [-04/O,]; family and shown in Fig. 8. The developed theory was
used to predict the snap-through force for these laminates, namely point G on Figs. 6-8. The results are
summarized in Table 1.

The calculation of the theoretical value of forces needs to be explained. To predict the shape of the
laminate before any force was applied, it was initially assumed that the shape was the result of a —280°F
temperature change relative to the cure temperature. Specifically, it was assumed that the cure temperature
was 350°F and the cooled temperature was 70°F. As was discussed in Dano and Hyer (1997), when using
this —280°F temperature change, the measured curvatures were generally less than the predicted curvatures.
This could easily be the case if the stress-free temperature of the laminate was less than 350°F, or if there
were polymer matrix shrinkage effects. However, it was also noted that when the curvatures were measured
six months later, they were less than the first measurement. This was attributed to relaxation effects in the
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Table 1

Comparison between theory and experiments of snap-through forces
Laminate From strain gage data (lb) From weight of water (Ib) Theory (Ib)

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

[904/04]; 18.14 16.39 - 16.99 15.43 -2 17.10
[—604/304]1 b 13.48 13.33 b 13.16 13.02 14.10
[604/304] 3.59 3.33 3.13 3.93 4.14 4.01 3.30
[—304/304] ¢ 9.23 9.55 9.34 8.89 8.69 8.49 11.95

#Test 3 not conducted.
®Wire broke near maximum load.

polymer matrix, as drying the laminates had no influence on the curvatures. Hence, to compute the pre-
dicted snap-through force in Table 1, the curvature just before the load was applied was used as the starting
point, not the curvature corresponding to a —280°F temperature change. This pre-loading curvature was
predicted by using a stress-free temperature lower than 350°F. With that in mind, it is seen that the
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Fig. 11. Experimentally and predicted moment-strain relations for the [904/04); laminate.
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comparison between predicted and measured snap-through force levels is reasonable. Within the experi-
ments, for a given laminate, there is scatter to the results. Within the strain gage measurements, there is
about a 15% spread (for the [604/30,4]; laminate) and within the water weight measurement, there is up to a
10% spread (for the [904/04]; laminate). Moreover there is a noticeable difference between the strain gage
measurement and the water weight measurement. A re-examination of the experimental procedure and raw
data has not provided an explanation. However, the results in Table 1 verify that the predictions and
experiments are in good qualitative agreement, and the quantitative comparison is also quite reasonable.
Specifically, the data in Table 1 confirm the prediction that the snapping force level is proportional to the
angle between the two fiber directions, the 30° difference of the [60,4/304]; case resulting in the least force
required for snapping. Unfortunately, since the relaxation effects were not the same in each laminate, it was
not possible to verify that the snap-through moment levels in the [904/04]; and [—604/304], laminates were
identical, as Fig. 6 predicts.
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Fig. 13. Experimental and predicted moment-strain relations for the [60,/304]; laminate.

Figs. 11-14 provide another comparison between predictions and experiments. These figures illustrate
the relations between the strains along the 0°, 90° and 45° directions, and the applied force as measured by
the strain gages at the center of each panel. Since data were sampled at discrete times by the data acqui-
sition system, the experimental relations consist of points rather than a continuous curve. The notation
‘+H /2’ and ‘—H /2’ simply refers to which side of the laminate the gage was on. On each figure are the
multiple strain traces, corresponding to the multiple tests, along with a single trace that is the prediction.
The data point at the beginning of the discontinuity in each trace of experimental data was used as the
indicator of snap-through for that test. These are the data used in Table 1. After the beginning of the snap-
through event, the measured strains are not considered meaningful since the event, as mentioned before, is
dynamic and there was flexural motion of the panel.

From the four figures several points are evident. First, for all laminates and all repeated tests the snap-
through event is distinct and can be easily determined from the strain vs. force traces. Also, in the context of



196 M.-L. Dano, M.W. Hyer | International Journal of Solids and Structures 39 (2002) 175-198

,,,,,,,,,,,,,,,, : 200
0 A Cexp. 600 : -
) ‘ pred:* 500
:.',.: -200 | E 400 4 i
S ‘ T 300 Precus
c ~40 £ 200:
® | © ‘ e
= _ 600 I & 1005 it
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
0 i 2500,
v““'“%%exp. . —am.
& —500! ——_,, N 2000} J
I pred. T ; ]
+ < »
~= —1000 S 1500
g | w
—1500 | .S 1000 -
.% ® [ g
=} [ red.
% — 2000 — - n 500» MEMMM
0 L L o)
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
_ . 2000 —
o N
? 'ZOO:N. exp. I 1500
© —400 M‘”“'mm Q [
w pred. w1000 ¢
c —600 c [ pred, 4
—_ — A
% - 800 % 500 e
1000 B » M exp
0L a
o 1 2 3 4 5 & 7 0o 1 2 3 4 5 8 7
Moment (Ib.in) Moment (Ib.in)

Fig. 14. Experimental and predicted moment-strain relations for the [—30,/304]; laminate.

Table 1, the experimental results are reasonably repeatable. Second, the difference between the predicted
and measured strain magnitudes are most noticeable for the [904/04]; and the [—60,4/304]; cases, the stiffest
laminates, the two fiber angles within the laminate being 90° apart. Local deformations in the laminates at
the base of the supports not accounted for in the analysis, which is a global-level analysis — i.e., it is based
on the assumption that curvatures co, ¢1g, and ¢y in Eq. (8) are valid throughout the laminate — are most
likely responsible for the deviations in these stiffer laminates. The forces actually cause the laminate to
deform locally at the base of the supports rather than deform more uniformly over the entire laminate, so
there is not as much strain produced away from the supports where the strain gages are mounted as there is
near the supports. Finally, it should be noted that the front and back strain levels are not equal and op-
posite, as might be expected in a bending problem. The presence of the bending-extension coupling effects
inherent with unsymmetric laminates are responsible for this.
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7. Summary and conclusions

Presented has been an approximate theory developed to predict the snap-through event in generally
unsymmetric laminates. Though the event is a dynamic one, a static approach has been taken. The theory is
based on assumed forms for the inplane strain and out-of-plane displacement fields, and uses the Rayleigh—
Ritz technique and virtual work. Numerical predictions were presented for three specific families of
laminates. It was shown that the snapping moment (force) levels for these families depends on the angle
between the two fiber directions characteristic of these laminates. A simple experimental set-up, designed to
measure the snapping force levels and strains in selected laminates, was described. Comparisons between
predictions and experimental results were good. Because of polymer relaxation effects, however, it was not
possible to compare all aspects of the experiments with predictions. None-the-less, it can be concluded that
the theory presented is accurate enough that it can be used with confidence to move on to employing active
SMA wires, for example, to develop the necessary forces. The issues with that approach are the generation
of sufficient force levels, while staying within the strain constraints of those materials, and initiating the
phase transformation.
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